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Abstract

The R-matrix Method embedded on a Lagrange Mesh is a very powerful Quantum Me-
chanical tool which can be used to solve the Coupled Channels Differential Equations.
In this report, we have presented the R-matrix approach for calculation of bound state
energies for various non-deformed and deformed potentials. The Lagrange mesh technique
requires calculation of potential matrix element at just Lagrange points which reduces the
computation requirement. The results obtained from R-matrix method are compared with
the results of other approaches. In this report, the R-matrix method is mainly applied
to the Coupled Channel Radial Schroedinger Equation for 37Mg which contains deformed
Wood-Saxon potential.
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Chapter 1

Introduction

Introduction

The aim of this project is to develop an algorithm to solve coupled channel inhomogeneous
Schrödinger Equation using R-Matrix method with Lagrange Mesh Technique. We are
considering the following type of radial Schrödinger Equation at energy E:

(Tc − E)uc +
∑
c′

Vcc′uc′ = 0 (1.1)

where Vcc′ is the coupled channel potential which also includes possible centrifugal term
~2lc(lc + 1)/2µcr

2 with lc as the orbital angular momentum of channel c. Tc is the kinetic
energy term:

Tc = − ~2

2µc

d2

dr2
(1.2)

Exotic Nuclei

The stable nuclei have been studied in very detail for a long time, but they are less than
10 % of total possible nuclei. Most of the nuclei are comparatively less stable and decay in
very short duration that their properties and structure are not entirely understood. With
the development of technology, it has become possible to synthesize and study relatively
loosely bound nuclei.

The number of protons and neutrons tends to remain equal in lighter nuclei and result
in the most stable nuclei. With the increase in the number of protons, the Coulomb
repulsion among protons increase which demands more neutrons than protons to form
stable nuclei. Thus, the heavier nuclei have more neutrons than protons. The plot of
nuclei on the graph with the x-axis as the number of neutrons and y-axis as the number
of protons clear shows that the stable nuclei lie along a straight line. This is also called
the island of stability.
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There are many nuclei which do not lie on the island of stability. These nuclei having
the excess of either neutrons or protons are called exotic nuclei. The exotic nuclei
are comparatively less stable and tend to stabilize through beta decay. The exotic nuclei
having the excess of protons undergo positive beta decay and convert a proton into neutron
while exotic nuclei with the excess of neutron undergo negative beta decay and changes
a neutron into a proton.

The neutron or proton separation energies of exotic nuclei are very low and eventually
become zero when they are very far from the line of stability. This region is called the
drip line. The line containing those nuclei in which no more neutron (proton) can be
added, is called neutron (proton) drip line. The proton drip line is closer to the line of
stability because the proton removal energy is lower than neutron removal energy due to
Coulomb repulsion.

Most of the nuclei along the drip line are difficult to synthesis and decay very rapidly,
but they play a significant role in astrophysical chain reactions. Thus, it is necessary to
determine their structure and properties.

Halo Nucleus

It has been observed that some nuclei have one or more valence nucleons present outside
the core at large distances. Classically these systems should be unstable, but Quantum
mechanically there exist finite probability of finding nucleons at such distances. These nu-
clei have a stable and nearly inert core surrounded by loosely bound one or more nucleons.
The outer nucleons form a halo around the stable core and are easily separated during an
interaction. This type of nucleus is called halo nucleus, the one with valence neutrons
(protons) is termed as the neutron (proton) halo. The neutron halos are relatively more
stable than proton halos due to Coulomb repulsion between outer proton and positively
charged core.

The examples of neutron halo are 11Be, 14B and 19C with one neutron whereas 6H, 11Li,
14Be and 17B with two neutrons. The examples of proton halo are 8B, 17Ne, 20Mg and
26,27,28P . 11Li has two neutrons forming the halo around the core which is similar to
9Li. The properties of the core of 11Li are same as that of 9Li. The stability of 11Li
was the mystery for very long time because if we remove one neutron from the halo of
11Li, the other halo neutron also leaves the nucleus resulting in 9Li. It becomes more
mysterious with the fact that 10Li does not exist in nature. Thus, 11Li is a three body
system in which the core and two neutron form stable system and no two bodies are in a
direct bound state. If we disturb one body, the whole system becomes unstable. 11Li is
analogous to the Borromean Rings, which is a system of three rings where if one ring is
removed then other two rings will also get unlinked.

The halo nucleus shows long density tail of Halo nucleons outside the core. According
to the Heisenberg uncertainty principle, the large spatial distribution should result in
narrow momentum distribution. The experimentally measured momentum distribution
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of halo nucleus was found to be extremely narrow which supports the fact that halo nuclei
have unusually large spatial distribution.

In this project, we have analysed the structure of 37Mg which is the most neutron-rich
bound isotope of Mg. 37Mg is a very loosely bound system with one neutron removal
energy as low as 0.16 ± 0.68 MeV. Thus, it is a promising candidate of nucleus having
one-neutron halo structure.

Coupled Channel Equation

In the case of deformation, the coupling between various states of different angular mo-
mentum results in coupled channel potential. In this report, we have considered axially
symmetric quadrupole deformed Woods-Saxon potential without spin-orbit term [1].

V (r1) = Vws(r1)− β2k(r1)Y 0
2 (r̂1), (1.3)

where,

Vws = V 0
wsf(r1), (1.4)

f(r1) =
1

1 + exp
(
r1−R
a0

) , (1.5)

R = r0A
1/3, (1.6)

k(r1) = RV 0
ws

df(r1)

dr1

, (1.7)

(1.8)

and V 0
ws = depth of the potential, r0 = radius, a0 = diffusion parameter, and β2 =

quadrupole deformation parameter. The radial Equation with the above deformed poten-
tial becomes coupled channel as{

d2

dr2
1

− l(l + 1)

r2
1

+
2µ

~2
(E + V 0

wsf(r1))

}
ulm(r1) =

− 2µ

~2

∑
l′

〈Y m
l (r̂1)| β2RV

0
ws

df(r1)

dr1

Y 0
2 (r̂1) |Y m

l′ (r̂1)〉ul′m(r1),
(1.9)

where ul′m(r1) is the radial wave function of the projectile.
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Chapter 2

R-matrix Theory

The R-matrix theory is a powerful tool of quantum physics proposed by Wigner and
Eisenbud who simplified the original idea of Kapur and Peierls. Initially, R-matrix theory
was used to describe resonances in nuclear reactions but later it was also developed to
solve coupled channel Schroedinger equations. The R-matrix Method was developed in
two directions: one is phenomenological R-matrix, and other is calculable R-matrix. The
phenomenological R-matrix theory is used to parametrize various types of cross-sections.
The calculable R-matrix theory is used to solve Schroedinger equation in atomic and
nuclear physics. In our case, we will be dealing with calculable R-matrix.

Calculable R-matrix

Consider a scattering with potential differing from Coulomb potential by short range
term.

V (r) −→
r→∞

Vc(r) =
Z1Z2e

2

r
(2.1)

In R-matrix method, we divide the configuration space into two regions: internal region
and external regions. A parameter channel radius defines the boundary between the
two regions.

In the external region, the wave function is approximated by the asymptotic form
where the only phase is unknown. In the internal region, complete interaction is consid-
ered, and the system is confined. The wave function is expanded over the finite square-
integrable basis. In our case, we will be using Lagrange basis. Both these forms of wave
functions are equated at the channel radius to get the phase shift. The R-matrix is de-
fined as the inverse of logarithmic derivative of the internal wave function at the channel
radius.

Consider a scattering where a system leads to various channels which are represented
by the orthonormal state vectors |c〉. A energy E, the total wave function [3] of the system
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is expanded on the basis of |c〉 as

Ψ =
∑
c

|c〉 r−1uc(r) (2.2)

i.e. all channels can be approximately described the same radial coordinate r. The
Schroedinger equation for the system

(H − E)Ψ = 0 (2.3)

can be written as a system of coupled equations with respect to the unknown radial
functions uc(r),

(Tc − E)uc +
∑
c′

Vcc′uc′ = 0 (2.4)

where Vcc′ is the coupled channel potential which also includes possible centrifugal term
~2lc(lc + 1)/2µcr

2 with lc as the orbital angular momentum of channel c.. Tc is the kinetic
energy of the system is

Tc = − ~2

2µc

d2

dr2
, (2.5)

where µc is the reduced mass of the channel c. The coupled channel potential includes
the threshold energy ETc at channel c and has asymptotic form

V (r) −→
r→∞

(
ETc +

Z1cZ2ce
2

r

)
δcc′ , (2.6)

where Z1ce and Z2ce are the charges of the nuclei in this channel. The coupling potentials
are assumed to be short-ranged whose effect is taken into account in the internal region.
The relative energy, wave-number, velocity and the Sommerfeld parameter in channel c
are denoted as Ec = E − ETc, kc, vc and ηc respectively.

The wave function in external region is approximated by its asymptotic form as

uc −→
r→∞

vc
−1/2[δciIc(kcr)− UciOc(kcr)], (2.7)

where the subscript i represents the initial channel. We need to find the collision matrix
Ucc′ through this asymptotic behaviour of bound solutions. The functions Ic and Oc are
ingoing and outgoing Coulomb wave functions which depend on the energy E through kc
and ηc and on the orbital momentum lc.

In R-matrix method, the configuration space in divided into two regions: internal
region and the external region, the boundary is defined by the channel radius, a which is
assumed to be same for all channels.
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The Bloch operator

The Hamiltonian Hc is not Hermitian over the internal region (0, a),∫ a

0

f(r)Hcg(r)dr 6=
∫ a

0

g(r)Hcf(r)dr, (2.8)

where f(r) and g(r) are some eigenfunctions of Hamiltonian Hc. We find that the differ-
ence between the two terms is∫ a

0

f(r)Hcg(r)dr −
∫ a

0

g(r)Hcf(r)dr =
~2

2µ
(f ′(a)g(a)− f(a)g′(a)) , (2.9)

where we have used the form of Hc as

Hc = − ~2

2µ

(
d2

dr2
− l(l + 1)

r2
+
∑
c′

Vcc′(r)

)
, (2.10)

This problem was solved elegantly by the introduction of Bloch surface operator:

L =
∑
c

|c〉 Lc 〈c| , (2.11)

with

Lc =
~2

2µ
δ(r − a)

(
d

dr
− Bc

r

)
, (2.12)

where Bc is a boundary parameter, assumed here to be real. This operator vanishes
everywhere except at r = a. The operator Hc + Lc is Hermitian over (0,a),∫ a

0

f(r)(Hc + Lc)g(r)dr =

∫ a

0

g(r)(Hc + Lc)f(r)dr, (2.13)

because∫ a

0

f(r)Lcg(r)dr −
∫ a

0

g(r)Lcf(r)dr = − ~2

2µ
(f ′(a)g(a)− f(a)g′(a)) (2.14)

The addition of Bloch Surface operator on both side of equation (2.4) results in Bloch-
Schroedinger system of equations

(Tc + Lc − E)uc +
∑
c′

Vcc′uc′ = Lcuc (2.15)

In the external region, the wave function is approximated by its asymptotic form, hence,
uc in the R.H.S. of Equation (2.15) is replaced by Equation (2.7)

(Tc + Lc − E)uintc +
∑
c′

Vcc′u
int
c′ = Lcvc−1/2[δciIc(kcr)− UciOc(kcr)]. (2.16)

In the internal region, the wave function uintc is expanded in some basis. We will be using
Lagrange basis which is described in the next section.
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Lagrange basis and Lagrange mesh

In the internal region, the radial wave function is expanded over a Lagrange basis,

uintc (r) =
N∑
n=1

Acnfn(r). (2.17)

A Lagrange basis is a set of N functions fn(x) associated with a Lagrange mesh of N
points axn on the interval [0, a]. The xn are zeros of the shifted Legendre polynomial
PN(2x− 1). The Lagrange functions are continuous and indefinitely differentiable

fn(r) = (−1)na−1/2

√
1− xn
xn

rPN [2(r/a)− 1]

r − axn
. (2.18)

They satisfy the Lagrange conditions

fn′(axn) = (aλn)−1/2δnn′ , (2.19)

i.e. each fn′ vanishes at all mesh points axn, except at axn′ . The coefficients λn are the
weights associated with a Gauss-Legendre quadrature approximation for the [0, 1] interval∫ 1

0

g(x)dx ≈
N∑
n=1

λng(xn). (2.20)

The weights λn are equal to the traditional Gauss-Legendre weights for the [−1,+1]
interval, divided by 2.

The Lagrange functions (2.18) are not orthogonal but, because of the Lagrange con-
ditions (2.19), they are approximately orthogonal at the Gauss approximation (2.20),∫ a

0

fn(r)fn′(r)dr ≈ δnn′ . (2.21)

Bound states

The bound state of the system (2.4) or (2.16) can be calculated using the Lagrange-
mesh technique. The energy Ec are all negative for an energy E below all thresholds.
The asymptotic form of the function uc in channel c is proportional to a Whittaker
function Wc(κcr) [9], which depends on lc, κc = (−2µcEc/~2)1/2 and the corresponding
ηc = Z1Z2α(µcc

2/2E)1/2

uextc = DcW−η,lc+1/2(2κcr) (2.22)

where Dc is constant specifying amplitude for channel c. The expansion over Lagrange
basis (2.17), in equation (2.16) results in

N∑
n′=1

(
(Tc + Lc − E)Acn′fn′(r) +

∑
c′

Vcc′Ac′n′fn′(r)

)
= Lcuextc . (2.23)
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Now taking projection of (2.23) on fn(r),∑
c′n′

∫
fn(r)[δcc′(Tc + Lc − E) + Vcc′ ]Ac′n′fn′(r)dr =

∫
fn(r)Lcuextc dr. (2.24)

If we choose

Bc = 2κca
W ′
−η,lc+1/2(2κca)

W−η,lc+1/2(2κca)
, (2.25)

the R.H.S. of (2.24) vanishes, i.e.∫
fn(r)Lcuextc dr =

~2

2µc

∫
δ(r − a)

(
duextc

dr
− Bcu

ext
c

r

)
dr (2.26)

=
~2

2µc

∫ (
DcW

′
c2κc −

BcDcWc

a

)
dr (2.27)

=
~2

2µca

∫
DcWc

(
W ′
c

Wc

2κca−Bc

)
dr (2.28)

= 0, (2.29)

where we have used chosen form of Bc (2.25). Now for this choice of Bc (2.25), the
equation (2.24) becomes ∑

c′n′

[Ccn,c′n′ − Eδcc′δnn′ ]Ac′n′ = 0, (2.30)

where we have used the orthogonality relation of Lagrange functions (2.21). The elements
of the symmetric matrix C are defined as

Ccn,c′n′ =

∫ a

0

fn(r)[δcc′(Tc + Lc) + Vcc′ ]fn′(r)dr. (2.31)

The matrix elements of Bloch operator are∫ a

0

fn(r)Lcfn′(r)dr =
~2

2µca
fn(a)[af ′n′(a)−Bcfn′(a)], (2.32)

where f ′n is the derivative of fn with respect to r. The potential matrix only have diagonal
elements with respect to n and n′∫ a

0

fn(r)Vcc′(r)fn′(r)dr ≈ Vcc′(axn)δnn′ . (2.33)

The Kinetic matrix is diagonal with respect to channel index c and its elements are given
by ∫ a

0

fn(r)Tcfn′(r)dr = − ~2

2µc
(aλn)1/2f ′′n′(axn). (2.34)
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The explicit forms of fn(a), f ′n(a) and f ′′n′(axn) are given in Appendix A.
At the Gauss approximation, the matrix C is a real and symmetric matrix. The

eigenvalues of C can easily be calculated using a standard routine (Appendix B). The
value of Bc and hence C matrix depends on the bound state energy. Hence, we will
consider Bc = 0 and will find eigenvalue for this assumed value of Bc. Then we will use
this new eigenvalue to calculate Bc and will iterate. The convergence occurs within few
iterations for all bound state energies.

Multichannel R-matrix

We consider that E is larger than all threshold energies, i.e. all channels are open. We will
choose Bc = 0 for all open channels. After taking projection of the Bloch Schroedinger
system on a basis function fn(r) (2.24), we obtain∑

c′n′

[Ccn,c′n′ − Eδcc′δnn′ ]Ac′n′ =
~2kc

2µc
√
vc
fn(a)[δciI

′
c(kca)− UciO′c(kca)]. (2.35)

Solving the system of equations (2.35) for Acn provides with (2.17) the radial functions

uc(r) =
∑
c′

~2kc′

2µc′
√
vc′

[δc′cI
′
c′(kc′a)− Uc′cO′c′(kc′a)]

×
N∑

n,n′=1

fn(r)(C − EI )−1
cn,c′n′fn′(a), (2.36)

where I is a unit matrix. The function uc in (2.36) still depends on the unknown collision
matrix U .

The R-matrix at energy E is defined as the inverse of logarithmic derivative of the
radial wave function at the boundary between the two regions. We choose it symmetric
and adimensional under the form

Rcc′ =
~2

2
√
µcµ′ca

N∑
n,n′=1

fn(a)(C − EI )−1
cn,c′n′fn′(a). (2.37)

Now, we define Z matrix as

Zcc′ = (kc′a)−1/2[δcc′Oc(kca)− kc′aRcc′O
′
c′(kc′a)], (2.38)

and equating at channel radius an expression (2.36) with its asymptotic form (2.7) provides
the unitary and symmetric collision matrix

U = Z−1Z ∗. (2.39)
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The above analysis has been done assuming all channels are open. Now, we will
include the closed channels in which E is less than the threshold energy. Let us represent
open channels by c and closed channels by c̄. The value of Bc can be chosen according
to Equation (2.25) for closed channels and Bc = 0 for open channels. The definition of
the R matrix must be modified by first eliminating the coefficients Ac̄n which corresponds
to closed channels [5]. C matrix will be replaced by a smaller open-channels matrix C̃
which has following elements:

C̃cn,c′n′ = Ccn,c′n′ −
∑
c̄c̄′

Vcc̄(axn)(C̄ − EĪ )−1
c̄n,c̄′n′Vc̄′c′(axn′), (2.40)

where C̄ is the restriction of the full matrix to closed channels. The dimension of unit
matrix Ī is same as that of C̄ .
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Chapter 3

Bound State Energies

In this chapter, we have described the algorithm to get bound state energies. As outlined
in the previous chapter, the closed channels have threshold energies more than E and Ec
are negative for these channels. We have calculated Ec using method described in section
2.4. First, we calculated the C matrix which involved the calculation of potential matrix
V and Lagrange functions. The calculation of eigenvalues of C matrix required choosing
Bc = 0 and within a few iterations, we got convergence.

Potential matrix

The Schrodinger equation, we are dealing with, contains deformed Woods-Saxon potential{
d2

dr2
1

− l(l + 1)

r2
1

+
2µ

~2
(E + V 0

wsf(r1))

}
ulm(r1) =

− 2µ

~2

∑
l′

〈Y m
l (r̂1)| β2RV

0
ws

df(r1)

dr1

Y 0
2 (r̂1) |Y m

l′ (r̂1)〉ul′m(r1),
(3.1)

where,

f(r1) =
1

1 + exp
(
r1−R
a0

) (3.2)

R = r0A
1/3, (3.3)

with r0, a0 and β2 as radius, diffusion parameter, and quadrupole deformation parameter
respectively. Comparing equation (3.1) with equation (2.4), we get Vll′ as

Vll′ =

(
~2

2µ

l(l + 1)

r2
1

− V 0
wsf(r1)

)
δll′

−〈Y m
l (r̂1)| β2RV

0
ws

df(r1)

dr1

Y 0
2 (r̂1) |Y m

l′ (r̂1)〉
(3.4)
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Figure 3.1: Woods-Saxon potential for V 0
ws = 50 MeV, a0 = 0.62 fm, A = 37 and r0 =

1.24 fm.

where l and l′ represent c and c′ respectively.
The first term in the potential matrix Vll′ is trivial. We started with the expression

for Woods-Saxon potential

Vws(r) = −V 0
ws

1

1 + exp
(
r−R
a0

) , (3.5)

where V 0
ws is the depth of Woods-Saxon potential. We have plotted Vws(r) for V 0

ws =
50 MeV, a0 = 0.62 fm, A = 37 and r0 = 1.24 fm as shown in Figure 3.1. The potential
depth V 0

ws will be chosen such that the bound state energies correspond to the experimental
measurements.

The first two terms in equation (3.4) indicate the potential without any deformation
i.e. β2 = 0. We have plotted the potential Vl(r) in Figure 3.2 which is the potential
without deformation

Vl =
~2

2µ

l(l + 1)

r2
1

− V 0
wsf(r1). (3.6)

The deformation part of the potential is the product of two terms: −β2RV
0
ws

df(r1)
dr1

and

〈Y m
l (r̂1)|Y 0

2 (r̂1) |Y m
l′ (r̂1)〉. The first term is just the derivative of Woods-Saxon potential
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Figure 3.2: Potential without any deformation for V 0
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Figure 3.3: Potential with deformation parameter β2 = 0.5, V 0
ws = 50 MeV, a0 = 0.62 fm,

A = 37, µ = 906.3 MeV and r0 = 1.24 fm.

multiplied by the radius of nucleus and deformation parameter. The second term contains
the spherical harmonics which can be expressed in terms of Wigner 3j symbols as

〈Y m
l (r̂1)|Y 0

2 (r̂1) |Y m
l′ (r̂1)〉 =

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

×
(
l 2 l′

0 0 0

)(
l 2 l′

m 0 m

)
.

(3.7)

The Wigner 3j symbols can be calculated using Racah formula, the standard subroutine
can also be used for Wigner 3j symbol (Appendix B). We have plotted the potential for
l = l′ and β2 = 0.5 in Figure 3.3 which shows the effect of deformation on potential (3.4)
for various values of m, the projection of l.

In the calculation of C matrix, the elements of V matrix (2.33) are calculated only
at Lagrange mesh points axn∫ a

0

fn(r)Vcc′(r)fn′(r)dr ≈ Vcc′(axn)δnn′ , (3.8)

where a and xn are boundary parameter and zeros of the Gauss-Legendre quadrature.

14



Kinetic matrix

The elements of kinetic matrix require f ′′n(axn) (2.32) which is given in Appendix A∫ a

0

fn(r)Tcfn′(r)dr = − ~2

2µc
(aλn)1/2f ′′n′(axn), (3.9)

where, xn are zeros of the Gauss-Legendre quadrature which can be obtained from a
standard routine (Appendix B). The kinetic matrix is diagonal with respect to the channel
index c.

Bloch matrix

The elements of Bloch matrix are non-zero only at boundary, i.e. r = a∫ a

0

fn(r)Lcfn′(r)dr =
~2

2µca
fn(a)[af ′n′(a)−Bcfn′(a)], (3.10)

where fn(a) and f ′n(a) are Lagrange function and derivative of the Lagrange function with
respect to r at r = a. The expressions for fn(a) and f ′n(a) are given in Appendix A which
require zeros of the Gauss-Legendre quadrature.

For closed channels, the boundary parameterBc depends on lc, κc and ηc (2.22) through
Whittaker function Wc(2κcr)

Bc = 2κca
W ′
−η,lc+1/2(2κca)

W−η,lc+1/2(2κca)
, (3.11)

where W ′
c(2κcr) is derivative of Wc(2κcr) at 2κca. The Whittaker function Wc(2κcr) can

be obtained using a standard routine (Appendix B).

C matrix

The elements of C matrix can be obtained from the elements of potential matrix, kinetic
matrix and Bloch matrix (2.31) as

Ccn,c′n′ =
~2

2µca

(
−a(aλn)1/2f ′′n′(axn) + fn(a)[af ′n′(a)−Bcfn′(a)]

)
δcc′

+Vcc′(axn)δnn′

(3.12)

where Bc is unknown because Bc depends on eigenvalue Ec. We take the initial value as
Bc = 0 and calculate the C matrix. The C matrix is real and symmetric matrix whose
eigenvalues can be obtained using a standard routine (Appendix B). The eigenvalues
have one negative energy that is bound state energy. We use this negative energy as

15



Table 3.1: Eigen Values of C matrix for non-deformed Wood-Saxon Potential with V 0
ws =

45 MeV, r0 = 1.26 fm, a0 = 0.62 fm for the case of 37Mg.
S. No. Eigenvalue

1 6064.907214
2 1030.076478
3 231.378992
4 -22.268603
5 -0.594533
6 4.475110
7 36.110060
8 60.178550
9 114.719343
10 18.326637

first approximation of eigenvalue and calculate Bc as given in Equation (3.11). Now,
we calculate C matrix using this new approximation of Bc and iterate the above step
to obtain more approximate eigenvalues. The convergence occurs within few iterations.
Using this approach, we calculate Ec for all channels.

Eigenvalues of C matrix

The C matrix was calculated for deformed Wood-Saxon potential as described in Section
3.1. The parameter used for deformed Wood-Saxon potential are V 0

ws = 45 MeV, r0 =
1.26 fm, a0 = 0.62 fm and deformation parameter, β2 = 0. We first calculated the bound
state energy of 37Mg with 2P as a ground state in the absence of deformation. Our
equation (3.1) considers two body interaction where one nucleon interact with the core
consisting of 36 Nucleons. The reduced mass µ is calculated as

µ =
m1m2

m1 +m2

= 938.92× 36

37
MeV. (3.13)

The value of Planck’s Constant is taken as ~ = 197.32697 and l = 1 for the state 2P .
The Number of mesh points are taken as N = 10 which means the potential is calculated
at 10 points only in the region (0, a) where a = 10. The eigenvalues of C matrix was
calculated using standard subroutine Mardi (Appendix B).

The eigenvalues of C matrix are listed in Table 3.1 which shows there are two negative
eigenvalues, both of which are bound state energies. Since the Hamiltonian does not
contain information about principle quantum number n, so the choice of l = 1 corresponds
to both 1P and 2P states. If we increase the depth of Wood-Saxon potential, V 0

ws, higher
P states will also get bound. Hence, -22.268 and -0.594 corresponds to 1P and 2P states
of 37Mg.
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Table 3.2: Iteration using Bc which is function of bound state energy Ec. Non-deformed
Wood-Saxon Potential with V 0

ws = 45 MeV, r0 = 1.26 fm, a0 = 0.62 fm for the case of
37Mg.

Iteration Eigenvalues
1 -22.268603 -0.594533
2 -22.268581 -0.341003
3 -22.268584 -0.365732
4 -22.268583 -0.362974
5 -22.268583 -0.363277
6 -22.268583 -0.363244
7 -22.268583 -0.363247
8 -22.268583 -0.363247
9 -22.268583 -0.363247
10 -22.268583 -0.363247

The negative eigenvalue is used to calculate Bc which defines a more approximate C
matrix. We used Ec = −0.594533 and calculated the eigenvalues of C matrix again. We
get the convergence within few iterations, the eigenvalues after each iteration are given in
Table 3.2. The iterative method eventually provides us with the bound state energies, the
value of Bc and C matrix which are required later in the calculation of wave functions.

The boundary parameter, a and the number of Lagrange points, N were fixed in the
calculation of Table 3.1 and 3.2. The bound state energies should not depend on the
choice of boundary parameter and number of Lagrange points. We calculated the bound
state energies with variation in boundary parameter, a and results are given in Table 3.3.
We observe that the eigenvalues are not changing significantly with a. The eigenvalues at
the lower value of a are not much consistent but they become constant for a greater than
10.

We have calculated the bound state energies for the various choices of the number of
mesh points. The accuracy of results increases with the increase in the number of mesh
points but the larger amount of computation is required with the increase in the number
of mesh points. The bound states energies calculated with various number of mesh points
are given in Table 3.4. We can see that the desired accuracy is obtained with 30 points
and increasing the number of points does not help in getting more accurate results instead
that requires a huge amount of computation.

Determination of Depth of Wood-Saxon Potential

In the previous calculations, we have selected the depth of Wood-Saxon potential as
V 0
ws = 45MeV . In nuclear physics, the depth of potential is different for various nuclei

and can not be obtained theoretically. The bound state energies of nuclei are measured
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Table 3.3: Variation in Eigenvalues with the channel radius, a for non-deformed Wood-
Saxon Potential with V 0

ws = 45 MeV, r0 = 1.26 fm, a0 = 0.62 fm for the case of 37Mg.
N a Eigenvalues
30 6.0 -22.309576
30 8.0 -22.313414
30 10.0 -22.313467 -0.307101
30 12.0 -22.313425 -0.314110
30 14.0 -22.313425 -0.317194
30 16.0 -22.313444 -0.318609
30 18.0 -22.313371 -0.319500
30 20.0 -22.313525 -0.319483
30 22.0 -22.313092 -0.320692
30 24.0 -22.314255 -0.315125
30 26.0 -22.312466 -0.320421
30 28.0 -22.311983 -0.322450
30 30.0 -22.316987 -0.311771

Table 3.4: Variation in eigenvalues with number of mesh points N for non-deformed
Wood-Saxon Potential with V 0

ws = 45 MeV, r0 = 1.26 fm, a0 = 0.62 fm for the case of
37Mg.

N a Eigenvalues
10 10.0 -22.268583 -0.363247
20 10.0 -22.313446 -0.307141
30 10.0 -22.313466 -0.307101
40 10.0 -22.313466 -0.307101
50 10.0 -22.313466 -0.307101

experimentally, which can be used to determine the depth of Wood-Saxon potential. We
set the depth of Wood-Saxon potential such that the bound state energy becomes equal
to the experimental value.

We calculated the depth of Wood-Saxon potential for 37Mg which is a neutron Halo
nucleus. The one-neutron separation energy of 37Mg is very low because the Halo neutron
is loosely bound to the core. The experimentally measured value of neutron separation
energy is in the range 0.16±0.68 MeV. However, the information about the ground state’s
spin and parity is not available. The state 2P3/2 is a promising candidate for the ground
state.

The Hamiltonian in our equation (3.1) does not include the l-s coupling. Hence, the
quantum number j is not defined and we take 2P as the ground state of 37Mg. We take
l = 1, N = 20, a = 10 and bound state energy E1 = −0.16, the parameter of Wood-Saxon
potential are same as taken in the previous calculations.

The depth of Wood-Saxon potential, V 0
ws is determined by the iterative method, in
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Table 3.5: Variation of Bound State Energies with deformation parameter β2 for Wood-
Saxon Potential with r0 = 1.26 fm, a0 = 0.62 fm for the case of 37Mg.

β2 V0 l El β2 V0 l El
0.0 44.36700 0 -32.12699 0.6 17.14900 0 -8.63691

0 -9.08003 1 -22.96095
1 -21.80121 1 -0.15979
1 -0.15992 2 -3.77077
2 -10.57405 0.7 15.59600 0 -7.41633

0.1 34.01200 0 -22.90156 1 -23.52389
0 -3.24220 1 -0.15955
1 -19.39239 2 -3.62139
1 -0.15989 3 -0.10704
2 -6.66078 0.8 14.29400 0 -6.41482

0.2 28.24300 0 -17.87784 1 -23.99877
0 -0.86635 1 -0.15989
1 -19.71552 2 -3.50162
1 -0.15981 3 -0.23875
2 -5.26889 0.9 13.18600 0 -5.58113

0.3 24.30600 0 -14.51919 1 -24.39751
1 -20.59425 1 -0.15943
1 -0.15984 2 -3.40104
2 -4.60895 3 -0.34490

0.4 21.35200 0 -12.04931 1.0 12.18500 0 -4.84522
1 -21.49359 1 -24.59994
1 -0.15965 1 -0.12526
2 -4.22211 2 -3.25696

0.5 19.02900 0 -10.14592 3 -0.36396
1 -22.28817
1 -0.15972
2 -3.96204
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which we set potential to some initial value and calculate bound state energy for 2P3/2. If
the calculated energy is not equal to the experimental value, then we decrease the depth
of potential by a small amount and calculate the bound state energy again. We stop this
iteration once we get the desired value of bound state energy. At the end of the iteration,
we get the bound state energies and the depth of potential.

We have determined the depth of potential for various value of deformation parameter,β2

where β2 = 0 corresponds to non-deformed case. We have also listed all the bound state
energies for a particular depth of potential. It is to be noted that we have selected 2P as
the ground state of 37Mg which may not be true as the deformation increase. The vari-
ation of the depth of potential with respect to deformation parameter is listed in Table
3.5.

The above calculation gives us the depth of potential for various deformations. We
have also calculated the depth of potential for the non-deformed case using Lagrange
mesh technique with Laguerre basis whose results can be used for comparison. This
Lagrange mesh technique with Laguerre basis does not require Bloch matrix, we just have
to calculate the kinetic and potential matrix element. The eigenvalue of the Hamiltonian
matrix gives the bound state energies for non-deformed case. We have listed all the
eigenvalues calculated using Laguerre-Lagrange mesh in Table 3.6.

In the calculation, we have set V 0
ws = 43.80520, so that we get the bound state energy

of P state as -0.16. The depth of potential required to obtain the experimental value of
bound state energy is of the same order as listed in Fig3.5. We can also observe that there
are two negative eigenvalues for P state, which corresponds to 1P and 2P states.

The depth of Wood-Saxon potential for the non-deformed case is also obtained using
a standard routine which gives potential depth and the single particle wave function. We
set the bound state energy for 2P3/2 of 37Mg as −0.1600 MeV and obtained the potential
depth as 43.4606 MeV. We have also set the bound state energy of 1P3/2 as -21.2803 which
was obtained using R-matrix method for V 0

ws = 44.367 MeV, we obtained V 0
ws = 43.07548

MeV. This clearly shows that the two negative eigenvalues obtained in R-matrix method
corresponds to 1P and 2P states. The depths of non-deformed Wood-Saxon potential
obtained from these algorithms are listed in Table 3.7. We can see that the potential
depth required to obtain the experimental value of bound state energy is of the same
order.

Bound State of Deuteron

Deuteron is the smallest bound state nucleus which consists of one proton and one neu-
tron. We have calculated the bound state energy of Deuteron using R-matrix method
and Laguerre-Lagrange mesh for comparison. The potential used for Deuteron can be
expressed as

V (r) = −V0 exp (−αr2), (3.14)
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Table 3.6: Bound State Energy of 2P state by Laguerre-Lagrange Mesh without R-matrix
Method for non-deformed Wood-Saxon Potential with V 0

ws = 43.80520 MeV, r0 = 1.26 fm,
a0 = 0.62 fm for the case of 37Mg.

S.No. Eigenvalue
1 12050.13213
2 715.44764
3 169.34277
4 60.12403
5 -21.28013
6 -0.16001
7 35.83051
8 21.74971
9 0.74895
10 14.37334
11 9.88658
12 5.00281
13 7.00276
14 0.20692
15 3.58506
16 2.53993
17 1.76614
18 0.42968
19 1.18288
20 0.06691

Table 3.7: Depth of non-deformed Wood-Saxon potential such that Bound State Energy
of 2P3/2 for 37Mg is equal to -0.16 MeV. Here r0 = 1.26 fm, a0 = 0.62 fm.

S.No. Algorithm V0 Eigenvalue
1 Single Particle Wave function 43.46026 -0.16000
2 Laguerre-Lagrange Mesh 43.80520 -0.16001
3 R-Matrix Method 44.36700 -0.15992
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Figure 3.4: Potential −V0 exp (−αr2) with V0 = 66.92 MeV and α = 0.415 fm−2

Table 3.8: Bound State energy of Deuteron with potential, −V0 exp (−αr2) using R-Matrix
Method with V0 = 66.92 MeV and α = 0.415 fm−2

a E
6.0 -2.19375
8.0 -2.20682
10.0 -2.21081
12.0 -2.21211
14.0 -2.21254
16.0 -2.21269
18.0 -2.21274
20.0 -2.21276
22.0 -2.21277
24.0 -2.21277
26.0 -2.21277
28.0 -2.21277
30.0 -2.21277
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Figure 3.5: The bound state wave function of Deuteron for the Potential −V0 exp (−αr2)
using Laguerre-Lagrange Mesh with V0 = 66.92 MeV and α = 0.415 fm−2

where V0 = 66.92 MeV and α = 0.415 fm−2. The reduced mass for deuteron was taken
as µ = 469.4592623. The bound state energy was calculated for this potential using R-
matrix method. The eigenvalue was calculated for various values of boundary parameter,
a and the result is listed in Table 3.8.

We can see that the bound state energy does not change by a significant amount with
the channel radius, a. The bound state energy also becomes constant for the channel
radius larger than a = 22.

The eigenvalue is also calculated using Laguerre-Lagrange mesh technique with N =
20. The eigenvalues are listed in Table 3.9, in which we can see that there is one negative
eigenvalue. This negative eigenvalue corresponds to the bound state energy of Deuteron.
We have also calculated the wave functions for Deuteron using Laguerre-Lagrange Mesh
Technique. The Figure 3.5 shows the bound state wave-function corresponding the the
negative eigenvalue. The Figure 3.6 shows some of the wave-functions out of 20, the wave-
function other than bound state show oscillatory behaviour because they corresponds to
continuum energy states.

We have also checked the orthonormality of these wave-functions. The rms value of
r is also calculated using these wave-functions which is found to be around 3.9034 fm.
We have listed both eigenvalues obtained using R-matrix method and Laguerre-Lagrange
mesh technique in Table 3.10.

From Table 3.10, we can compare that the result of R-matrix method is more accurate
than the result of just Lagrange mesh Technique. Thus, it clearly shows that the R-matrix
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Table 3.9: Bound State energy of Deuteron with potential, −V0 exp (−αr2) using
Laguerre-Lagrange Mesh with V0 = 66.92 MeV and α = 0.415 fm−2

S.No. Eigenvalue
1 6998.60650
2 721.78196
3 -2.19930
4 247.04743
5 123.09420
6 72.04641
7 11.34043
8 46.08855
9 31.18602
10 0.07014
11 21.85608
12 8.23441
13 15.65693
14 0.65108
15 5.94310
16 4.22337
17 2.91905
18 1.93093
19 1.18978
20 0.28382

Table 3.10: Bound State energy of Deuteron with potential, −V0 exp (−αr2) From Various
approach.

S.No. Method Eigen Value
1 R-Matrix Method -2.21277
2 Laguerre-Lagrange Mesh -2.19930
3 Experimental Value 2.224589 ± 0.000002
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Figure 3.6: Some wave functions of Deuteron for the Potential −V0 exp (−αr2) using
Laguerre-Lagrange Mesh with V0 = 66.92 MeV and α = 0.415 fm−2

method is more accurate than Lagrange mesh. This extra accuracy lies in the fact, in
R-matrix method, we use iterations to refine the eigenvalues whereas in Lagrange mesh we
find eigenvalue just once. The dependence of Whittaker function on bound state energy
(2.25) ensures that we get accurate results.

The R-matrix method does not require a large number of iteration for convergence
of eigenvalues, usually 5 iterations are enough if we are using 20 mesh points. We have
used 10 iterations for all the previous calculations. The value of channel radius, a may
have some effect on the number of iterations but using more number of mesh points
compensates for that.
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Chapter 4

Wave function

The calculation of bound state energy and C matrix is necessary for calculation of the
wave function of the coupled system. When E is greater than threshold energy, then
the channel is called open channel and we take Bc = 0 for those channels. For closed
channels, the value of Bc is taken as the function of bound state energy, Ec through
Whittaker function (2.25). We have done our calculation, considering all the channels
open i.e. Bc = 0.

R matrix

The calculation of wave function requires R matrix (2.37) which is defined as

Rcc′ =
~2

2
√
µcµ′ca

N∑
n,n′=1

fn(a)(C − EI )−1
cn,c′n′fn′(a). (4.1)

The calculation of R matrix requires inverse of (C − EI ) matrix, where I is identity
matrix and E is energy. So, the calculation of this inverse matrix is straight forward.
The function fn(a) are Lagrange functions given in Appendix A. Thus, R matrix can be
calculated, we considered two channels which resulted in a (2× 2) R matrix.

Z matrix

The calculation of Z matrix (2.38) requires computation of ingoing and outgoing Coulomb
functions [8] as

Zcc′ = (kc′a)−1/2[δcc′Oc(kca)− kc′aRcc′O
′
c′(kc′a)]. (4.2)

The ingoing and outgoing function are defined in terms of Regular and Irregular Coulomb
functions as

Ic = (Gc − iFc) exp (iωc) (4.3)

Oc = (Gc + iFc) exp (−iωc), (4.4)
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where,

ωc = ωαl = σαl − σα0 =
l∑

n=1

tan−1

(
ηα
η

)
. (4.5)

In our case, neutron is neutral particle, i.e. ηα = 0, hence ωc = 0. The Coulomb functions
F and G can be obtained from a standard routine (Appendix B). The calculation of
Coulomb Function enables us to calculate Z matrix.

Collision matrix

The Collision matrix U can be calculated from the Z matrix as

U = Z−1Z ∗, . (4.6)

where Z−1 and Z ∗ are the inverse and complex conjugate of Z matrix. The inverse of
Z matrix requires a subroutine to find inverse of complex matrix (see Appendix B. Once
both of these matrices are calculated, we can easily calculate collision matrix,U .

Radial Wave Function

The radial wave function (2.36) requires ingoing, outgoing, collision matrix, fn(a) and
fn(r) (2.18)

uc(r) =
∑
c′

~2kc′

2µc′
√
vc′

[δc′cI
′
c′(kc′a)− Uc′cO′c′(kc′a)]

×
N∑

n,n′=1

fn(r)(C − EI )−1
cn,c′n′fn′(a). (4.7)

The wave function depends on r only through the term

Dcc′(r) =
N∑

n,n′=1

fn(r)(C − EI )−1
cn,c′n′fn′(a) (4.8)

where fc(r) is oscillatory in nature but complete summation results in the smooth curve
for c = c′ as shown in Figure 4.1. However, the off-diagonal terms are oscillatory and have
larger amplitude. Thus, the final wave function is also highly oscillatory. We are trying
to rectify this problem.
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Chapter 5

Conclusion

In this report, we have presented the method of determination of bound-state energies
in various potentials which also include deformed potentials. The R-matrix method is
capable of determining the bound state energies for deformed as well as coupled channel
potential.

We have compared bound state energy for 37Mg and Deuteron. 37Mg includes the
deformed Wood -Saxon potential with coupling between various l terms. The potential
can be approximated to non-deformed potential by choosing deformation parameter as
β2 = 0. The results for determination of depth of non-deformed Wood-Saxon potential
were found to be in agreement with the results from other standard methods like Laguerre-
Lagrange Mesh technique and Single particle wave function program. The bound state
energies were also obtained for various deformation which shows that the rearrangement
of states occurs as shown in Table 3.5. After some deformation, the states with higher
angular momentum start acquiring lower bound states which indicate that the ground
state of the system changes at higher deformation.

The bound state energy for Deuteron was found using R-matrix method and the results
were found to be in agreement with experimental value as well as the value obtained from
Laguerre-Lagrange mesh technique. The wave functions of Deuteron were also determined
using Laguerre-Lagrange Mesh Technique.

The two important inputs in R-matrix method are channel radius, a and the number
of mesh point. It is shown in the previous chapter that the value of bound-state energy is
independent of the choice of channel radius and number of mesh points. The advantage
of using R-matrix with Lagrange mesh is that we need to calculate potential only at
mesh points. This reduces the computation requirement without any compensation for
the accuracy.

The calculation for wave function is complete but the behaviour of the wave function
is not satisfactory. The highly oscillatory behaviour required to be removed before we get
some useful wave function.

29



Appendix A

Gauss-Legendre Quadrature

In this section, we have gathered the simple expressions for the calculation of various
matrix elements in R-matrix method. The zeros and weights of Gauss-Legendre quadra-
ture can be obtained from some library routine (Appendix B). The calculation of kinetic
energy matrix elements (3.9) requires the simple expressions

a2f ′′n(axn) = −(aλn)−1/2N(N + 1)xn(1− xn)− 3xn + 1

3x2
n(1− xn)2

(A.1)

and

a2f ′′n′(axn) = −(−1)n+n′
(aλn)−1/2xn + xn′ − 2x2

n

xn′(xn′ − xn)2

√
xn′(1− xn′)

xn(1− xn)3
. (A.2)

The Bloch matrix elements can be obtained using expressions

fn(a) = (−1)na−1/2[xn(1− xn)]−1/2 (A.3)

af ′n(a) = [N2 +N + 1− (1− xn)−1]fn(a). (A.4)

The value of λn can be obtained using expression

λn = [4xn(1− xn)]−1[P ′N(2xn − 1)]−2. (A.5)

30



Appendix B

Packages

The calculation of binding energy required various standard packages. We are listing them
below:

• WITT: Whittaker function and their derivative were calculated using this subrou-
tine.

• gammln: Provides log of gamma function. We modified it to give gamma function.

• Wig3j: This subroutine calculates Wigner 3j symbol required in the calculation
of potential matrix. This is standard routine but we made our own using Racah
formula.

• MARDI: The eigenvalue and eigenfunction of a symmetric matrix can be calculated
using this.

• Inverse: The inverse of a matrix can be found using this.

• COULCC: This is standard routine for the calculation of Coulomb Functions and
their derivative.

• CMATINV: This standard routine provides inverse of complex matrix.

• MATMUL: This routine multiplies two complex matrices.

• setmgl: This routine provides the zeros and weights of Gauss-Legendre Quadrature.
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