

Neutrino tomography of Earth using INO@ICAL

Iron Calorimeter (ICAL) detector at INO [1] can play an important role to reveal the existence of Earth's core since it can reconstruct core passing v_{μ} and \bar{v}_{μ} separately with high resolution in the multi-GeV range of energy.

- ICAL@INO: 50 kton magnetized iron detector
- **Uniqueness:** CID for muons, distinguishes v_{μ} and \bar{v}_{μ}
- Muon energy range: 1 25 GeV, Muon energy resolution: ~ 10%
- **Baselines:** 15 12000 km, **Muon zenith angle resolution:** $\sim 1^{\circ}$

_		
Mantle-crust	(0, 5701, 6371)	(6.45, 3.3)
Core-mantle	(0, 3480, 6371)	(11.37, 4.42)
Uniform	(0, 6371)	(5.55)

Neutrino Oscillations in Matter

- The atmospheric neutrinos undergo coherent elastic forward scattering with electrons inside the Earth which leads to the modification of neutrino oscillations[2].
- Neutrinos passing through the mantle feel the Mikheyev-Smirnov-Wolfenstein (MSW) resonance.
- The core passing neutrinos experience parametric resonance.

Anil Kumar^{a, b, c}, Sanjib Kumar Agarwalla^{a, c, d} ^a IOPB, India, ^b SINP, India, ^c HBNI, India, ^d ICTP, Italy

Methodology

- Three flavor neutrino oscillations in the presence of matter by considering various profiles of Earth based on PREM profile[3].
- Neutrino events are generated for flux at Theni site using NUANCE.
- The detector properties are incorporated using a migration matrix obtained from GEANT simulations by ICAL collaboration.
- Systematics and uncertainty on oscillation parameters are taken into account while performing statistical analysis.

Core Passing Neutrino Events

Statistical Analysis and Results

$$\chi_{-}^{2} = \min_{\xi_{l}} \sum_{i=1}^{N_{E_{had}^{irec}}} \sum_{j=1}^{N_{cos\theta_{\mu}^{rec}}} \left[2(N_{ijk}^{\text{theory}} - N_{ijk}^{\text{data}}) - 2N_{ijk}^{\text{data}} \ln\left(\frac{N_{ijk}^{\text{theory}}}{N_{ijk}^{\text{data}}}\right) \right] + \sum_{l=1}^{5} \xi$$
where,
$$N_{ijk}^{\text{theory}} = N_{ijk}^{0} \left(1 + \sum_{l=1}^{5} \pi_{ijk}^{l} \xi_{l}\right)$$

$$\sum_{i=1}^{\theta_{\mu}^{\text{rec}}} \left[2(N_{ijk}^{\text{theory}} - N_{ijk}^{\text{data}}) - 2N_{ijk}^{\text{data}} \ln\left(\frac{N_{ijk}^{\text{theory}}}{N_{ijk}^{\text{data}}}\right) \right] + \sum_{l=1}^{5} \xi$$
$$N_{ijk}^{\text{theory}} = N_{ijk}^{0} \left(1 + \sum_{l=1}^{5} \pi_{ijk}^{l} \xi_{l} \right)$$

Similarly, χ^2_+ is defined for μ^+

$$\Delta \chi^2_{\text{ICAL-profile}} = \chi^2_{\text{ICAL}}$$
 (Mant

(NO, IO)

	Theory	$\Delta \chi^2_{ m ICAL-profile}$			
Data		NO(true)		IO(true)	
		CID	No CID	CID	No CID
Core-mantle-crust	Vacuum	4.65	2.96	3.53	1.43
Core-mantle-crust	Mantle-crust	6.31	3.19	3.92	1.29
Core-mantle-crust	Core-mantle	0.73	0.47	0.59	0.21
Core-mantle-crust	Uniform	4.81	2.38	3.12	0.91

Summary and Conclusion

- and 3.92 for inverted ordering
- lishing the presence of core.

References

- Observatory (INO)". In: *Pramana* 88.5 (2017), p. 79. ISSN: 0973-7111.
- *the Earth and Planetary Interiors* 25.4 (1981), pp. 297–356. ISSN: 0031-9201.

anil.k@iopb.res.i

- $\chi^2_{\rm ICAL} = \chi^2_- + \chi^2_+$
- tle-Crust) χ^2_{ICAL} (Core-Mantle-Crust)
- Neutrino Flux: Theni Exposure: 500 kt·yr Marginalization over $\sin^2 \theta_{23}$: (0.36, 0.66), Δm_{eff}^2 : (2.1, 2.6) ×10⁻³ eV², and mass ordering:

• Using atmospheric neutrinos at ICAL in 10 years, the presence of Earth's core can be established at $\Delta \chi^2$ of 6.31 for normal ordering

• Charge identification capability of ICAL plays a crucial role in estab-

^[1] A. Kumar et al. "Invited review: Physics potential of the ICAL detector at the India-based Neutrino

^[2] L. Wolfenstein. "Neutrino oscillations in matter". In: *Phys. Rev. D* 17 (9 1978), pp. 2369–2374.

^[3] Adam M. Dziewonski and Don L. Anderson. "Preliminary reference Earth model". In: *Physics of*